Engineering Subject Leader: Mr J Fulson Email: <u>ifulson@taptonschool.co.uk</u> ## **Curriculum Intent:** Through a combination of traditional and technological approaches, the Engineering programme will enable students to solve problems by learning from their mistakes when creating electronic and mechanical products and systems. | mec | hanical products and systems. | | |---------------|---|--| | | Core Knowledge | Procedural Knowledge | | | Topics: | Students will: | | Autumn Term 1 | Mechanical Engineering principles. Mechanical Systems. Metalworking processes and tools. Lathe and Milling machine operation. Computer Aided Design. Quality Control. Selection of materials. Extracting information from Engineering Drawings. Health and Safety and risk assessment. Sustainable design | Follow Engineering drawings to plan making a Can Crusher. Risk Assess. Plan for making. Have practical lessons on manufacturing the Torch and Can Crusher. Explain why materials have been chosen. | | | Topic: | Students will: | | Autumn Term 2 | Mechanical Engineering principles. Mechanical Systems. Metalworking processes and tools. Lathe and Milling machine operation. Computer Aided Design. Quality Control. Selection of materials. Extracting information from Engineering Drawings. Health and Safety and risk assessment. Sustainable design | Risk Assess Have practical lessons on manufacturing the Torch and Can Crusher. Explain why materials have been chosen. | | Spring Term 1 | Mechanical Engineering principles. Mechanical Systems. Metalworking processes and tools. Lathe and Milling machine operation. Computer Aided Design. Quality Control. Selection of materials. Extracting information from Engineering Drawings. Health and Safety and risk assessment. Sustainable design | Students will: Have practical lessons on manufacturing the Torch and Can Crusher. Explain why materials have been chosen. Evaluate the completed product including if it meets tolerances. | #### Topic: Students will: 8 • Metalworking processes and tools. • Follow Engineering drawings for an Aluminium **Spring Term** • Lathe and Milling machine operation. Torch or design and make a torch from scratch • Computer Aided Design and manufacture. if they have opted for Design Engineering in Y10. • Selection of materials. • Risk Assess. • Extracting information from Engineering Drawings. Health and Safety and risk • Plan for making. assessment. • Have practical lessons on manufacturing the Torch. Students will: Topic: • Lathe and Milling machine operation. • Follow Engineering drawings for an Aluminium Torch or design and make a torch from scratch • Computer Aided Design and manufacture. **Summer Term 1** if they have opted for Design Engineering in • Quality Control. • Extracting information from Engineering Y10. Risk Assess. Drawings. Health and Safety and risk • Plan for making. assessment. • Have practical lessons on manufacturing the Torch. Solder. **Students will:** Topic: 2 • Lathe and Milling machine operation. Risk Assess. Summer term • Computer Aided Design and manufacture. • Plan for making. • Quality Control. • Have practical lessons on manufacturing the • Extracting information from Engineering Drawings. Health and Safety and risk • Program their torch. Evaluate the completed assessment. product including if it meets tolerances. • Evaluating a finished product. #### **Homework:** Homework is set on Class Charts for every six hours taught. Homework will comprise a presentation on how technology has affected culture and revision for tests. #### Assessment: Formative verbal and other feedback. Exploration grade (research). Create grade (making). Evaluation grade. Principles grade through a multiple-choice test. Presentation skills and content grade. ## **Links to Personal Development:** Iterative design. Dexterity and soldering skills. Coding. Self-evaluation of work. Presentation skills. # How is my knowledge developed further at GCSE? Vocational Engineering - Practical skills are developed. - Ability to use Computer Aided Design is developed. - Knowledge and understanding of materials, processes and components are developed. - This is a good preparation for an apprenticeship. #### **Design Engineering** - Design and making of electronic circuitry (including relevant theory) is developed. - Design and making of mechanical devices (including relevant theory) is developed. - Deeper knowledge and understanding of materials, processes sustainable design is furthered. - This is a good preparation for an Engineering A-Level.